📖 WIPIVERSE

🔍 현재 등록된 정보: 21,099건

공집합

공집합은 수학, 특히 집합론에서 원소를 하나도 포함하지 않는 집합을 의미한다. 다시 말해, 비어 있는 집합이다.

표기:

공집합은 보통 그리스 문자 파이(Φ, φ)에 빗금을 그은 기호 (∅) 또는 중괄호 안에 아무것도 쓰지 않은 기호 ({})로 표기한다. 유니코드에서는 U+2205 (EMPTY SET)로 표현된다.

정의:

공집합은 다음과 같이 정의될 수 있다.

  • 어떤 원소 x에 대해서도 x ∈ ∅ (x는 공집합의 원소이다)이 성립하지 않는다.

성질:

공집합은 여러 가지 중요한 성질을 갖는다.

  • 공집합은 모든 집합의 부분집합이다. 즉, 임의의 집합 A에 대하여 ∅ ⊆ A이다.
  • 공집합의 멱집합은 {∅}이다.
  • 공집합과 임의의 집합의 합집합은 그 집합 자신이다. 즉, 임의의 집합 A에 대하여 ∅ ∪ A = A이다.
  • 공집합과 임의의 집합의 교집합은 공집합이다. 즉, 임의의 집합 A에 대하여 ∅ ∩ A = ∅이다.
  • 공집합의 카디널리티(원소의 개수)는 0이다.

활용:

공집합은 수학의 여러 분야에서 기본적인 개념으로 활용되며, 논리적 추론이나 집합 연산의 정의 등에 중요한 역할을 한다. 예를 들어, 어떤 조건을 만족하는 원소가 존재하지 않음을 증명할 때 공집합의 개념이 사용될 수 있다.